Semi-Infinite Programming using High-Degree Polynomial Interpolants and Semidefinite Programming
نویسنده
چکیده
In a common formulation of semi-infinite programs, the infinite constraint set is a requirement that a function parametrized by the decision variables is nonnegative over an interval. If this function is sufficiently closely approximable by a polynomial or a rational function, then the semi-infinite program can be reformulated as an equivalent semidefinite program. Solving this semidefinite program is challenging if the polynomials involved are of high degree, due to numerical difficulties and bad scaling arising both from the polynomial approximations and from the fact that the semidefinite programming constraints coming from the sum-of-squares representation of nonnegative polynomials are badly scaled. We combine rational function approximation techniques and polynomial programming to overcome these numerical difficulties, using sum-of-squares interpolants. Specifically, it is shown that the conditioning of the reformulations using sum-of-squares interpolants does not deteriorate with increasing degrees, and problems involving sumof-squares interpolants of hundreds of degrees can be handled without difficulty. The proposed reformulations are sufficiently well scaled that they can be solved easily with every commonly used semidefinite programming solver, such as SeDuMi, SDPT3, and CSDP. Motivating applications include convex optimization problems with semi-infinite constraints and semidefinite conic inequalities, such as those arising in the optimal design of experiments. Numerical results align with the theoretical predictions; in the problems considered, available memory was the only factor limiting the degrees of polynomials, to approximately 1000.
منابع مشابه
Generating Non-linear Interpolants by Semidefinite Programming
Interpolation-based techniques have been widely and successfully applied in the verification of hardware and software, e.g., in bounded-model checking, CEGAR, SMT, etc., whose hardest part is how to synthesize interpolants. Various work for discovering interpolants for propositional logic, quantifier-free fragments of first-order theories and their combinations have been proposed. However, litt...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملA new solving approach for fuzzy multi-objective programming problem in uncertainty conditions by using semi-infinite linear programing
In practice, there are many problems which decision parameters are fuzzy numbers, and some kind of this problems are formulated as either possibilitic programming or multi-objective programming methods. In this paper, we consider a multi-objective programming problem with fuzzy data in constraints and introduce a new approach for solving these problems base on a combination of the multi-objecti...
متن کاملSemidefinite Outer Approximation of the Backward Reachable Set of Discrete-time Autonomous Polynomial Systems
We approximate the backward reachable set of discrete-time autonomous polynomial systems using the recently developed occupation measure approach. We formulate the problem as an infinite-dimensional linear programming (LP) problem on measures and its dual on continuous functions. Then we approximate the LP by a hierarchy of finitedimensional semidefinite programming (SDP) programs on moments of...
متن کاملA numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 27 شماره
صفحات -
تاریخ انتشار 2017